南京标朗建筑装饰工程有限公司

您现在的位置是:首页 > 资讯 > 正文

资讯

电缆故障定位 电缆故障定位方法

admin2022-11-10 01:22:16资讯9
如何快速而准确地进行电缆故障定位?快速准确地进行电缆故障定位的方法:1、电桥法:惠斯通/Murray电桥法,由高压发生器与桥体、高灵敏度检流计组成。利用故障点两侧的电缆线芯电阻与比例电阻构成惠斯通

如何快速而准确地进行电缆故障定位?

快速准确地进行电缆故障定位的方法:

1、电桥法:惠斯通/Murray 电桥法,由高压发生器与桥体、高灵敏度检流计组成。利用故障点两侧的电缆线芯电阻与比例电阻构成惠斯通/Murray 电桥,当检流计指零时电桥达到平衡,电桥桥臂间对应电阻比值相等。又根据电阻率公式,线芯电阻之比等于电缆长度之比,得到电缆故障距离=电缆全长*定位旋纽指示比例。

2、时域反射法

根据二次世界大战时期发明的雷达原理,测量装置发射适中的脉冲信号,脉冲沿通信电缆、信号电缆、控制电缆和电力电缆的路径传播,在电缆故障点处反射回来脉冲信号,利用脉冲反射法原理得到反射波形,从反射的波形幅值和形状可判断电缆故障的类型和性质,如低阻接地故障、断线故障等。

扩展资料:

电缆故障测试方法选择

2.1. 上图测试流程函盖220V—220KV电压等级的路灯电缆、控制电缆、动力电缆及超高压动力电缆。

2.2. 从测试技术方法及使用人员技术水平角度考虑:

2.2.1 对于路灯电缆、地埋信号电缆、低压动力电缆:

绝大多数情况电缆已破损并接大地,这时应考虑直接以跨步电压法直接定点为主测试方法,此法对测试人员技术水平要求较低。

但如果电缆较长(大于400米以上),因为跨步电压法为沿电缆路径全线进行测试,有的地方路况人难于进行长距离测试,工作量就较大。这时,可考虑以脉冲法或电桥法测试配合使用。用脉冲法或电桥法测试故障点大致距离,再进行跨步电压法或声磁同步等方法定点。这样可以极大提高效率,但对测试人员技术水平要求高一些。

如果为单芯电缆,无法用脉冲法测距。

2.2.2 对于6KV及以上高压电缆主绝缘故障:

大部分电缆都为铠装屏蔽电缆,故障外护套破损比例为20%左右,很多故障点开挖出来后为内部故障,通过外表目测也无法看到。针对此情况,测距也就显得尤为重要,没有故障点的大致距离,如果全线定点就显得非常盲目,效率太低。

测试故障距离可考虑脉冲法(包括低压脉冲和多种高压脉冲法)为主,高压电桥法为辅的测试原则。这两个方法各有特点,脉冲法测试成功的概率高,但对测试人员技术水平要求高一些;高压电桥法测试成功的概率略低,但操作使用非常简单,而且对于脉冲法较费劲的严重受潮或绝缘严重不平衡的电缆故障效果非常好。如果将两个方法结合使用,就能使故障测试的难度大大降低,故障测试效率成倍提升。

定点用的最多而且成功率最高的为声磁同步法。还有跨步电压法、电磁预定点、音频法可辅助配合使用。虽然为辅助方法,但可能对某条故障电缆来说却有特效。

2.2.3 对于35KV以上电缆的外护套故障:

35KV以上电缆的外护套的绝缘有一定要求,这就使得如果有了破损就必须找出来。

故障点的测距为高压电桥法,用好相作为测试参考相。

故障点的定点用高压跨步电压法。

2.2.4 电缆路径的测试:

电缆路径的测试有音频法和冲击脉冲法两种。

音频路径法经过多年使用已基本成熟,如果用管线仪来查找电缆走向则更加方便快捷。

冲击脉冲法是近年发展的新方法,可以在定点的同时查找电缆走向,而且抗干扰性能较强。

参考资料:百度百科-电缆故障定位

电缆故障定位

电缆故障定位的一些技巧

在利用回波法进行电缆故障定位时, 有时通过转移故障相,接线方式,往往会将复杂的故障转变为简单的故障,快速确定故障位置,为现场线路的抢修赢得时间,这对于供电使用部门意义重大。

低压电力电缆一般为多芯电缆,敷设后连续使用中出现故障后,一般都呈现两芯及多芯相间或相对地短路故障。有时在检测到某一芯采集到的故障波形不理想时,可考虑将接线转换到其他故障线芯上进行故障波形检测,往往会出现意想不到的效果,采集和检测到的波形,会变得比较典型和规则,于是就能很快确定电缆故障点的具体位置。

长期的电缆客户现场测量过程中发现,小截面铜芯直埋电力电缆(35mm2及以下)及铝芯电缆发生故障后,可能同时伴随短路及断线故障,现场检测时,根据各故障芯故障性质的不同将短路故障转换为断线故障测量,往往会事事半功倍。

对于内衬层采用挤包铠装的中压直埋电力电缆,故障原因大多为外部机械损伤所致,在绝缘线芯发生故障的同时,内衬层可能已经破损。在遇到电缆绝缘故障比较特殊,利用专业电缆故障仪采集波形困难时。可考虑利用声测法,将高压脉冲直接施加在电缆的钢带和铜屏蔽层之间,往往会很快定点。

在现场测量过程,在利用声测法进行低压电缆故障定点时,将高压线和地线接在坏相与金属屏蔽或铠装之间时,由于二者绝缘电阻呈现低阻金属性连接状态,声音很小,无法利用探头进行侦听定点,效果不理想。通过多次现场实际听侧,发现将放电球隙之间的距离适当加大,同时将高压和接地线改接在发生故障的两相之间,往往放电声会变大,很快确定故障点。

电缆故障点快速精确定位的方法

电缆故障点精确定位的方法,其中故障电缆的总长度为已知数据,其特征在于,包括如下步骤:去除故障电缆上的负载,将两端线芯分开,?并悬空,以所述故障电缆其中一端的位置作为检测点;用数字式绝缘电阻测试仪测量所述分开的各线芯间,以及各线芯与屏蔽钢带间绝缘电阻,从而确定故障线芯,即所在故障的线芯;然后再测量故障线芯间以及各故障线芯与屏蔽钢带间的直流电阻;测得的直流电阻均小于或等于1?kΩ的,采用电缆故障定位电桥和波反射电缆故障定位仪分别测量任一故障线芯来确定故障点与检测点之间的电缆长度值,从而确定故障点位置;两装置测出的故障点位置相差大于容差距离的,此时以波反射电缆故障定位仪的测试结果为准,相差小于或等于容差距离的,将两装置测出的故障点位置之间的范围确定为故障点范围;测得的直流电阻均大于1kΩ的,使用波反射电缆故障定位仪测量任一故障线芯来确定故障点与检测点之间的电缆长度值,从而确定故障点位置,并以此故障点位置为圆心,容差距离为半径,确定故障点范围;测得的的直流电阻大小不一的,使用波反射电缆故障定位仪测量任一故障电芯来确定故障点与检测点之间的电缆长度值,从而确定故障点位置,并以此故障点位置为圆心,容差距离为半径,确定故障点范围;上述容差距离均为5m;c)用电缆故障定位电源在检测点位置对故障线芯间或故障线芯与钢带间施加脉冲电压;在步骤b)中确定的故障点范围内根据声音判断寻找故障点准确位置或者使用电缆故障定点仪,在步骤b)中确定的故障点范围内,用声磁同步法,查找电缆故障点准确位置。

电缆故障点的查找方法:

 1.低压脉冲法(简称脉冲法)

当线路输入一个脉冲电波时,该脉冲便以速度V沿线路传输,当行Lx距离遇到故障点后被反射折回输入端,其往返时间为T,V为电波在线路中的传播速度,与线路一次参数有关,对每种线路它是一个固定值,可通过计算和DFDL-S 电缆故障测试仪实测得到。将脉冲源的发射脉冲和线路故障点的反射波以一显示器实时显示,并由仪器提供的时钟信号可测得时间T。

对电缆的低阻性接地和短路故障及断线故障,及冲法可很方便地测出故障距离。但对高阻性故障,因在低电压的脉冲作用下仍呈现很高的阻抗,使反射波不明显甚至无反射。此种情况下需加一定的直流高压或冲击高压使其放电,利用闪络电弧形成瞬间短路产生电波反射。

 2.直流高压闪络法(简称直闪法)

当故障电阻极高,尚未形成稳定电阻通道之前,可利用逐步升高的直流电压施于被测电缆。至一定电压值后故障点首选被击穿,形成闪络,利用闪络电弧对所加入电压形成短路反射,反射回波在输入端被高阻源形成开路反射。这样电压在输入端和故障点之间将多次反射,直至能量消耗殆尽为止。

3.冲击高压闪络法(简称冲闪法)

当故障电阻降低,形成稳定电阻通道后,因设备容量所限,直流高压加不上去,此时需改用冲击电压测试。直流高压经球间隙对电缆充电直至击穿,仍用其形成的闪络电弧产生短路反射。在电缆输入端需加测量电感L以读取回波。其原理线路见图4所示,电波在故障点被短路反射,在输入端被L反射,在其间将形成多次反射。因电感L的自感现象,开始由于L的阻流作用呈现开路反射,随着电流的增加经一定时间后呈现短路反射。而整个线路又由电容C和电感L又组成一个L—C放电的大过程。因此,在线路输入端所呈现的波过程是一个近于衰减的余弦曲线上迭加着快速的脉冲多次反射波。从反射波的间隔可求出故障的距离。

电缆故障定位的方法有哪些?

当在电缆中的某个局部点处,绝缘已经恶化到发生击穿的程度,允许电流浪涌到地,该电缆被称为故障电缆,并且最大泄漏的位置可以被认为是灾难性的绝缘故障。在获得所有间隙并且电缆已经隔离以准备电缆故障定位后,强烈建议遵循固定的攻击计划来定位故障。在诊断任何复杂问题时,按照设定的逐步程序将有助于达到解决方案,或者在这种情况下,有效地精确定位故障。

请点击输入图片描述

一般初始分析和测试完成,有两种类型的电缆故障定位仪器可用:

时域反射计(TDR)

脉冲反射方法,脉冲回波方法或时域反射计是应用于所谓的电缆雷达或TDR的术语。该技术于20世纪40年代后期开发,可以连接到电缆的一端,实际上可以看到电缆并测量电缆变化的距离。最初的首字母缩略词RADAR(RAdio Detection And Ranging)被应用于检测远程飞机的方法,并通过分析无线电波的反射来确定它们的距离和速度。机场雷达系统和警用雷达枪使用这种技术,其中一部分发射的无线电波从飞机或地面车辆反射回接收天线。

捶击器(浪涌发生器)

这些设备基本上是高压脉冲发生器,包括直流电源,高压电容器和某种类型的高压开关。电源用于将电容器充电至高电压,然后触点闭合将电容器放电到被测电缆中。如果电压足够高以击穿故障,则存储在电容器中的能量通过故障时的闪络迅速放电,从而在地面产生可检测的声音或“重击”。捶击器的重要规格是它可以产生的最大电压以及它为故障提供多少能量。

在聚乙烯电缆开始安装在地下几年之后,证据开始浮出水面,由于绝缘层中的“树状”,这种塑料电缆长时间高压捶击弊大于利。对于PILC电缆而言,情况并非如此,其中通常需要更高的电压和更多的能量来定位故障而不会损坏电缆。关于EPR的树木状况,意见不一。由于这种树状况,许多公用事业公司发布了工作规则,降低了用于故障定位的最大允许电压。

以焦耳(瓦特 - 秒)为单位测量的任何浪涌发生器的能量输出计算如下:E = V2 C2其中E =焦耳能量,C =电容单位为μf,V =电压单位为kV以增加“爆炸”故障只有两个选择是增加操作员可以完成的电压或增加制造商必须完成的电容。图34显示了典型的4微法脉冲发生器的输出能量曲线,该发生器在25kV的最大电压下产生1250焦耳。如果故障定位人员被告知捶击器的输出电压必须限制在12.5 kV(25 kV的一半),则其捶击器的输出能量将减少四倍至312焦耳。

在实际的世界中,300到400焦耳是在地面听到砰砰声的门槛,没有声学放大和很少的背景噪音。如果无法听到故障的砰砰声,唯一的选择是增加电压以便找到故障,进行修理并重新打开灯。

回复者:华天电力